Metamath Proof Explorer


Definition df-lplanes

Description: Define the set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice k , in other words all elements of height 3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM, 16-Jun-2012)

Ref Expression
Assertion df-lplanes LPlanes=kVxBasek|pLLineskpkx

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpl classLPlanes
1 vk setvark
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvark
6 5 4 cfv classBasek
7 vp setvarp
8 clln classLLines
9 5 8 cfv classLLinesk
10 7 cv setvarp
11 ccvr class
12 5 11 cfv classk
13 3 cv setvarx
14 10 13 12 wbr wffpkx
15 14 7 9 wrex wffpLLineskpkx
16 15 3 6 crab classxBasek|pLLineskpkx
17 1 2 16 cmpt classkVxBasek|pLLineskpkx
18 0 17 wceq wffLPlanes=kVxBasek|pLLineskpkx