Metamath Proof Explorer


Definition df-lvols

Description: Define the set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice k , in other words all elements of height 4 (or lattice dimension 4 or projective dimension 3). (Contributed by NM, 1-Jul-2012)

Ref Expression
Assertion df-lvols LVols=kVxBasek|pLPlaneskpkx

Detailed syntax breakdown

Step Hyp Ref Expression
0 clvol classLVols
1 vk setvark
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvark
6 5 4 cfv classBasek
7 vp setvarp
8 clpl classLPlanes
9 5 8 cfv classLPlanesk
10 7 cv setvarp
11 ccvr class
12 5 11 cfv classk
13 3 cv setvarx
14 10 13 12 wbr wffpkx
15 14 7 9 wrex wffpLPlaneskpkx
16 15 3 6 crab classxBasek|pLPlaneskpkx
17 1 2 16 cmpt classkVxBasek|pLPlaneskpkx
18 0 17 wceq wffLVols=kVxBasek|pLPlaneskpkx