Metamath Proof Explorer


Definition df-nadd

Description: Define natural ordinal addition. This is a commutative form of addition over the ordinals. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion df-nadd Could not format assertion : No typesetting found for |- +no = frecs ( { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } , ( On X. On ) , ( z e. _V , a e. _V |-> |^| { w e. On | ( ( a " ( { ( 1st ` z ) } X. ( 2nd ` z ) ) ) C_ w /\ ( a " ( ( 1st ` z ) X. { ( 2nd ` z ) } ) ) C_ w ) } ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnadd Could not format +no : No typesetting found for class +no with typecode class
1 vx setvarx
2 vy setvary
3 1 cv setvarx
4 con0 classOn
5 4 4 cxp classOn×On
6 3 5 wcel wffxOn×On
7 2 cv setvary
8 7 5 wcel wffyOn×On
9 c1st class1st
10 3 9 cfv class1stx
11 cep classE
12 7 9 cfv class1sty
13 10 12 11 wbr wff1stxE1sty
14 10 12 wceq wff1stx=1sty
15 13 14 wo wff1stxE1sty1stx=1sty
16 c2nd class2nd
17 3 16 cfv class2ndx
18 7 16 cfv class2ndy
19 17 18 11 wbr wff2ndxE2ndy
20 17 18 wceq wff2ndx=2ndy
21 19 20 wo wff2ndxE2ndy2ndx=2ndy
22 3 7 wne wffxy
23 15 21 22 w3a wff1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxy
24 6 8 23 w3a wffxOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxy
25 24 1 2 copab classxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxy
26 vz setvarz
27 cvv classV
28 va setvara
29 vw setvarw
30 28 cv setvara
31 26 cv setvarz
32 31 9 cfv class1stz
33 32 csn class1stz
34 31 16 cfv class2ndz
35 33 34 cxp class1stz×2ndz
36 30 35 cima classa1stz×2ndz
37 29 cv setvarw
38 36 37 wss wffa1stz×2ndzw
39 34 csn class2ndz
40 32 39 cxp class1stz×2ndz
41 30 40 cima classa1stz×2ndz
42 41 37 wss wffa1stz×2ndzw
43 38 42 wa wffa1stz×2ndzwa1stz×2ndzw
44 43 29 4 crab classwOn|a1stz×2ndzwa1stz×2ndzw
45 44 cint classwOn|a1stz×2ndzwa1stz×2ndzw
46 26 28 27 27 45 cmpo classzV,aVwOn|a1stz×2ndzwa1stz×2ndzw
47 5 25 46 cfrecs classfrecsxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnzV,aVwOn|a1stz×2ndzwa1stz×2ndzw
48 0 47 wceq Could not format +no = frecs ( { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } , ( On X. On ) , ( z e. _V , a e. _V |-> |^| { w e. On | ( ( a " ( { ( 1st ` z ) } X. ( 2nd ` z ) ) ) C_ w /\ ( a " ( ( 1st ` z ) X. { ( 2nd ` z ) } ) ) C_ w ) } ) ) : No typesetting found for wff +no = frecs ( { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } , ( On X. On ) , ( z e. _V , a e. _V |-> |^| { w e. On | ( ( a " ( { ( 1st ` z ) } X. ( 2nd ` z ) ) ) C_ w /\ ( a " ( ( 1st ` z ) X. { ( 2nd ` z ) } ) ) C_ w ) } ) ) with typecode wff