Description: Define the (open)neighborhood resp. the class of all neighbors of a vertex (in a graph), see definition in section I.1 of Bollobas p. 3 or definition in section 1.1 of Diestel p. 3. The neighborhood/neighbors of a vertex are all (other) vertices which are connected with this vertex by an edge. In contrast to a closed neighborhood (see df-clnbgr ), a vertex is not a neighbor of itself (see nbgrnself ). This definition is applicable even for arbitrary hypergraphs.
Remark: To distinguish this definition from other definitions for neighborhoods resp. neighbors (e.g., nei in Topology, see df-nei ), the suffix Vtx is added to the class constant NeighbVtx . (Contributed by Alexander van der Vekens and Mario Carneiro, 7-Oct-2017) (Revised by AV, 24-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nbgr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnbgr | ||
| 1 | vg | ||
| 2 | cvv | ||
| 3 | vv | ||
| 4 | cvtx | ||
| 5 | 1 | cv | |
| 6 | 5 4 | cfv | |
| 7 | vn | ||
| 8 | 3 | cv | |
| 9 | 8 | csn | |
| 10 | 6 9 | cdif | |
| 11 | ve | ||
| 12 | cedg | ||
| 13 | 5 12 | cfv | |
| 14 | 7 | cv | |
| 15 | 8 14 | cpr | |
| 16 | 11 | cv | |
| 17 | 15 16 | wss | |
| 18 | 17 11 13 | wrex | |
| 19 | 18 7 10 | crab | |
| 20 | 1 3 2 6 19 | cmpo | |
| 21 | 0 20 | wceq |