Metamath Proof Explorer


Definition df-padd

Description: Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of MaedaMaeda p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011)

Ref Expression
Assertion df-padd +𝑃=lVm𝒫Atomsl,n𝒫AtomslmnpAtomsl|qmrnplqjoinlr

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpadd class+𝑃
1 vl setvarl
2 cvv classV
3 vm setvarm
4 catm classAtoms
5 1 cv setvarl
6 5 4 cfv classAtomsl
7 6 cpw class𝒫Atomsl
8 vn setvarn
9 3 cv setvarm
10 8 cv setvarn
11 9 10 cun classmn
12 vp setvarp
13 vq setvarq
14 vr setvarr
15 12 cv setvarp
16 cple classle
17 5 16 cfv classl
18 13 cv setvarq
19 cjn classjoin
20 5 19 cfv classjoinl
21 14 cv setvarr
22 18 21 20 co classqjoinlr
23 15 22 17 wbr wffplqjoinlr
24 23 14 10 wrex wffrnplqjoinlr
25 24 13 9 wrex wffqmrnplqjoinlr
26 25 12 6 crab classpAtomsl|qmrnplqjoinlr
27 11 26 cun classmnpAtomsl|qmrnplqjoinlr
28 3 8 7 7 27 cmpo classm𝒫Atomsl,n𝒫AtomslmnpAtomsl|qmrnplqjoinlr
29 1 2 28 cmpt classlVm𝒫Atomsl,n𝒫AtomslmnpAtomsl|qmrnplqjoinlr
30 0 29 wceq wff+𝑃=lVm𝒫Atomsl,n𝒫AtomslmnpAtomsl|qmrnplqjoinlr