Metamath Proof Explorer


Definition df-ptdf

Description: Define the predicate PtDf , which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012)

Ref Expression
Assertion df-ptdf PtDfAB=xxvB-rA+vA123

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cB classB
2 0 1 cptdfc classPtDfAB
3 vx setvarx
4 cr class
5 3 cv setvarx
6 ctimesr classv
7 cminusr class-r
8 1 0 7 co classB-rA
9 5 8 6 co classxvB-rA
10 cpv class+v
11 9 0 10 co classxvB-rA+vA
12 c1 class1
13 c2 class2
14 c3 class3
15 12 13 14 ctp class123
16 11 15 cima classxvB-rA+vA123
17 3 4 16 cmpt classxxvB-rA+vA123
18 2 17 wceq wffPtDfAB=xxvB-rA+vA123