Metamath Proof Explorer


Definition df-reg

Description: Define regular spaces. A space is regular if a point and a closed set can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion df-reg Reg=jTop|xjyxzjyzclsjzx

Detailed syntax breakdown

Step Hyp Ref Expression
0 creg classReg
1 vj setvarj
2 ctop classTop
3 vx setvarx
4 1 cv setvarj
5 vy setvary
6 3 cv setvarx
7 vz setvarz
8 5 cv setvary
9 7 cv setvarz
10 8 9 wcel wffyz
11 ccl classcls
12 4 11 cfv classclsj
13 9 12 cfv classclsjz
14 13 6 wss wffclsjzx
15 10 14 wa wffyzclsjzx
16 15 7 4 wrex wffzjyzclsjzx
17 16 5 6 wral wffyxzjyzclsjzx
18 17 3 4 wral wffxjyxzjyzclsjzx
19 18 1 2 crab classjTop|xjyxzjyzclsjzx
20 0 19 wceq wffReg=jTop|xjyxzjyzclsjzx