Description: Define class of all non-unital rings. Anon-unital ring (or rng, or
pseudoring) is a set equipped with two everywhere-defined internal
operations, whose first one is an additive abelian group operation and
the second one is a multiplicative semigroup operation, and where the
addition is left- and right-distributive for the multiplication.
Definition of a pseudo-ring in section I.8.1 of BourbakiAlg1 p. 93 or
the definition of a ring in part Preliminaries of Roman p. 18. As
almost always in mathematics, "non-unital" means "not necessarily
unital". Therefore, by talking about a ring (in general) or a
non-unital ring the "unital" case is always included. In contrast to a
unital ring, the commutativity of addition must be postulated and cannot
be proven from the other conditions. (Contributed by AV, 6-Jan-2020)
Could not format assertion : No typesetting found for |- Rng = { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } with typecode |-
Could not format ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) : No typesetting found for wff ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) with typecode wff
Could not format { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } : No typesetting found for class { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } with typecode class
Could not format Rng = { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } : No typesetting found for wff Rng = { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } with typecode wff