Metamath Proof Explorer


Definition df-rng

Description: Define class of all non-unital rings. Anon-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of BourbakiAlg1 p. 93 or the definition of a ring in part Preliminaries of Roman p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020)

Ref Expression
Assertion df-rng Could not format assertion : No typesetting found for |- Rng = { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 crng classRng
1 vf setvarf
2 cabl classAbel
3 cmgp classmulGrp
4 1 cv setvarf
5 4 3 cfv classmulGrpf
6 csgrp Could not format Smgrp : No typesetting found for class Smgrp with typecode class
7 5 6 wcel Could not format ( mulGrp ` f ) e. Smgrp : No typesetting found for wff ( mulGrp ` f ) e. Smgrp with typecode wff
8 cbs classBase
9 4 8 cfv classBasef
10 vb setvarb
11 cplusg class+𝑔
12 4 11 cfv class+f
13 vp setvarp
14 cmulr class𝑟
15 4 14 cfv classf
16 vt setvart
17 vx setvarx
18 10 cv setvarb
19 vy setvary
20 vz setvarz
21 17 cv setvarx
22 16 cv setvart
23 19 cv setvary
24 13 cv setvarp
25 20 cv setvarz
26 23 25 24 co classypz
27 21 26 22 co classxtypz
28 21 23 22 co classxty
29 21 25 22 co classxtz
30 28 29 24 co classxtypxtz
31 27 30 wceq wffxtypz=xtypxtz
32 21 23 24 co classxpy
33 32 25 22 co classxpytz
34 23 25 22 co classytz
35 29 34 24 co classxtzpytz
36 33 35 wceq wffxpytz=xtzpytz
37 31 36 wa wffxtypz=xtypxtzxpytz=xtzpytz
38 37 20 18 wral wffzbxtypz=xtypxtzxpytz=xtzpytz
39 38 19 18 wral wffybzbxtypz=xtypxtzxpytz=xtzpytz
40 39 17 18 wral wffxbybzbxtypz=xtypxtzxpytz=xtzpytz
41 40 16 15 wsbc wff[˙f/t]˙xbybzbxtypz=xtypxtzxpytz=xtzpytz
42 41 13 12 wsbc wff[˙+f/p]˙[˙f/t]˙xbybzbxtypz=xtypxtzxpytz=xtzpytz
43 42 10 9 wsbc wff[˙Basef/b]˙[˙+f/p]˙[˙f/t]˙xbybzbxtypz=xtypxtzxpytz=xtzpytz
44 7 43 wa Could not format ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) : No typesetting found for wff ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) with typecode wff
45 44 1 2 crab Could not format { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } : No typesetting found for class { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } with typecode class
46 0 45 wceq Could not format Rng = { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } : No typesetting found for wff Rng = { f e. Abel | ( ( mulGrp ` f ) e. Smgrp /\ [. ( Base ` f ) / b ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } with typecode wff