Metamath Proof Explorer


Definition df-rrv

Description: In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016) (Revised by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Assertion df-rrv RndVar = p Prob dom p MblFn μ 𝔅

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrv class RndVar
1 vp setvar p
2 cprb class Prob
3 1 cv setvar p
4 3 cdm class dom p
5 cmbfm class MblFn μ
6 cbrsiga class 𝔅
7 4 6 5 co class dom p MblFn μ 𝔅
8 1 2 7 cmpt class p Prob dom p MblFn μ 𝔅
9 0 8 wceq wff RndVar = p Prob dom p MblFn μ 𝔅