Metamath Proof Explorer


Definition df-rrv

Description: In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016) (Revised by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Assertion df-rrv RndVar=pProbdompMblFnμ𝔅

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrv classRndVar
1 vp setvarp
2 cprb classProb
3 1 cv setvarp
4 3 cdm classdomp
5 cmbfm classMblFnμ
6 cbrsiga class𝔅
7 4 6 5 co classdompMblFnμ𝔅
8 1 2 7 cmpt classpProbdompMblFnμ𝔅
9 0 8 wceq wffRndVar=pProbdompMblFnμ𝔅