Metamath Proof Explorer


Definition df-ssp

Description: Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion df-ssp SubSp=uNrmCVecwNrmCVec|+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu

Detailed syntax breakdown

Step Hyp Ref Expression
0 css classSubSp
1 vu setvaru
2 cnv classNrmCVec
3 vw setvarw
4 cpv class+v
5 3 cv setvarw
6 5 4 cfv class+vw
7 1 cv setvaru
8 7 4 cfv class+vu
9 6 8 wss wff+vw+vu
10 cns class𝑠OLD
11 5 10 cfv class𝑠OLDw
12 7 10 cfv class𝑠OLDu
13 11 12 wss wff𝑠OLDw𝑠OLDu
14 cnmcv classnormCV
15 5 14 cfv classnormCVw
16 7 14 cfv classnormCVu
17 15 16 wss wffnormCVwnormCVu
18 9 13 17 w3a wff+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu
19 18 3 2 crab classwNrmCVec|+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu
20 1 2 19 cmpt classuNrmCVecwNrmCVec|+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu
21 0 20 wceq wffSubSp=uNrmCVecwNrmCVec|+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu