Metamath Proof Explorer


Definition df-tan

Description: Define the tangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion df-tan tan=xcos-10sinxcosx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctan classtan
1 vx setvarx
2 ccos classcos
3 2 ccnv classcos-1
4 cc class
5 cc0 class0
6 5 csn class0
7 4 6 cdif class0
8 3 7 cima classcos-10
9 csin classsin
10 1 cv setvarx
11 10 9 cfv classsinx
12 cdiv class÷
13 10 2 cfv classcosx
14 11 13 12 co classsinxcosx
15 1 8 14 cmpt classxcos-10sinxcosx
16 0 15 wceq wfftan=xcos-10sinxcosx