Metamath Proof Explorer


Definition df-trlson

Description: Define the collection of trails with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Assertion df-trlson TrailsOn=gVaVtxg,bVtxgfp|faWalksOngbpfTrailsgp

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctrlson classTrailsOn
1 vg setvarg
2 cvv classV
3 va setvara
4 cvtx classVtx
5 1 cv setvarg
6 5 4 cfv classVtxg
7 vb setvarb
8 vf setvarf
9 vp setvarp
10 8 cv setvarf
11 3 cv setvara
12 cwlkson classWalksOn
13 5 12 cfv classWalksOng
14 7 cv setvarb
15 11 14 13 co classaWalksOngb
16 9 cv setvarp
17 10 16 15 wbr wfffaWalksOngbp
18 ctrls classTrails
19 5 18 cfv classTrailsg
20 10 16 19 wbr wfffTrailsgp
21 17 20 wa wfffaWalksOngbpfTrailsgp
22 21 8 9 copab classfp|faWalksOngbpfTrailsgp
23 3 7 6 6 22 cmpo classaVtxg,bVtxgfp|faWalksOngbpfTrailsgp
24 1 2 23 cmpt classgVaVtxg,bVtxgfp|faWalksOngbpfTrailsgp
25 0 24 wceq wffTrailsOn=gVaVtxg,bVtxgfp|faWalksOngbpfTrailsgp