Metamath Proof Explorer


Definition df-uncf

Description: Define the uncurry functor, which can be defined equationally using evalF . Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Assertion df-uncf uncurry F = c V , f V c 1 eval F c 2 func f func c 0 1 st F c 1 ⟨,⟩ F c 0 2 nd F c 1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuncf class uncurry F
1 vc setvar c
2 cvv class V
3 vf setvar f
4 1 cv setvar c
5 c1 class 1
6 5 4 cfv class c 1
7 cevlf class eval F
8 c2 class 2
9 8 4 cfv class c 2
10 6 9 7 co class c 1 eval F c 2
11 ccofu class func
12 3 cv setvar f
13 cc0 class 0
14 13 4 cfv class c 0
15 c1stf class 1 st F
16 14 6 15 co class c 0 1 st F c 1
17 12 16 11 co class f func c 0 1 st F c 1
18 cprf class ⟨,⟩ F
19 c2ndf class 2 nd F
20 14 6 19 co class c 0 2 nd F c 1
21 17 20 18 co class f func c 0 1 st F c 1 ⟨,⟩ F c 0 2 nd F c 1
22 10 21 11 co class c 1 eval F c 2 func f func c 0 1 st F c 1 ⟨,⟩ F c 0 2 nd F c 1
23 1 3 2 2 22 cmpo class c V , f V c 1 eval F c 2 func f func c 0 1 st F c 1 ⟨,⟩ F c 0 2 nd F c 1
24 0 23 wceq wff uncurry F = c V , f V c 1 eval F c 2 func f func c 0 1 st F c 1 ⟨,⟩ F c 0 2 nd F c 1