Metamath Proof Explorer


Definition df-unop

Description: Define the set of unitary operators on Hilbert space. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-unop UniOp=t|t:ontoxytxihty=xihy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuo classUniOp
1 vt setvart
2 1 cv setvart
3 chba class
4 3 3 2 wfo wfft:onto
5 vx setvarx
6 vy setvary
7 5 cv setvarx
8 7 2 cfv classtx
9 csp classih
10 6 cv setvary
11 10 2 cfv classty
12 8 11 9 co classtxihty
13 7 10 9 co classxihy
14 12 13 wceq wfftxihty=xihy
15 14 6 3 wral wffytxihty=xihy
16 15 5 3 wral wffxytxihty=xihy
17 4 16 wa wfft:ontoxytxihty=xihy
18 17 1 cab classt|t:ontoxytxihty=xihy
19 0 18 wceq wffUniOp=t|t:ontoxytxihty=xihy