Database GRAPH THEORY Undirected graphs Neighbors, complete graphs and universal vertices Universal vertices df-uvtx  
				
		 
		
			
		 
		Description:   Define the class of all universal vertices (in graphs).  A vertex is
       calleduniversal  if it is adjacent, i.e. connected by an edge, to all
       other vertices (of the graph), or equivalently, if all other vertices
       are its neighbors.  (Contributed by Alexander van der Vekens , 12-Oct-2017)   (Revised by AV , 24-Oct-2020) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-uvtx   ⊢   UnivVtx  =    g  ∈  V  ⟼   v  ∈    Vtx   ⁡  g   |   ∀  n  ∈     Vtx   ⁡  g   ∖   v      n  ∈  g  NeighbVtx  v               
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cuvtx  class  UnivVtx    
						
							1 
								
							 
							vg  setvar  g    
						
							2 
								
							 
							cvv  class  V    
						
							3 
								
							 
							vv  setvar  v    
						
							4 
								
							 
							cvtx  class   Vtx     
						
							5 
								1 
							 
							cv  setvar  g    
						
							6 
								5  4 
							 
							cfv  class    Vtx   ⁡  g     
						
							7 
								
							 
							vn  setvar  n    
						
							8 
								3 
							 
							cv  setvar  v    
						
							9 
								8 
							 
							csn  class   v      
						
							10 
								6  9 
							 
							cdif  class     Vtx   ⁡  g   ∖   v        
						
							11 
								7 
							 
							cv  setvar  n    
						
							12 
								
							 
							cnbgr  class  NeighbVtx    
						
							13 
								5  8  12 
							 
							co  class  g  NeighbVtx  v    
						
							14 
								11  13 
							 
							wcel  wff   n  ∈  g  NeighbVtx  v     
						
							15 
								14  7  10 
							 
							wral  wff   ∀  n  ∈     Vtx   ⁡  g   ∖   v      n  ∈  g  NeighbVtx  v       
						
							16 
								15  3  6 
							 
							crab  class   v  ∈    Vtx   ⁡  g   |   ∀  n  ∈     Vtx   ⁡  g   ∖   v      n  ∈  g  NeighbVtx  v         
						
							17 
								1  2  16 
							 
							cmpt  class    g  ∈  V  ⟼   v  ∈    Vtx   ⁡  g   |   ∀  n  ∈     Vtx   ⁡  g   ∖   v      n  ∈  g  NeighbVtx  v            
						
							18 
								0  17 
							 
							wceq  wff   UnivVtx  =    g  ∈  V  ⟼   v  ∈    Vtx   ⁡  g   |   ∀  n  ∈     Vtx   ⁡  g   ∖   v      n  ∈  g  NeighbVtx  v