Metamath Proof Explorer


Definition df-vr1

Description: Define the base element of a univariate power series (the X element of the set R [ X ] of polynomials and also the X in the set R [ [ X ] ] of power series). (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion df-vr1 var1=rV1𝑜mVarr

Detailed syntax breakdown

Step Hyp Ref Expression
0 cv1 classvar1
1 vr setvarr
2 cvv classV
3 c1o class1𝑜
4 cmvr classmVar
5 1 cv setvarr
6 3 5 4 co class1𝑜mVarr
7 c0 class
8 7 6 cfv class1𝑜mVarr
9 1 2 8 cmpt classrV1𝑜mVarr
10 0 9 wceq wffvar1=rV1𝑜mVarr