Metamath Proof Explorer


Theorem df2o2

Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004)

Ref Expression
Assertion df2o2 2𝑜=

Proof

Step Hyp Ref Expression
1 df2o3 2𝑜=1𝑜
2 df1o2 1𝑜=
3 2 preq2i 1𝑜=
4 1 3 eqtri 2𝑜=