Metamath Proof Explorer


Theorem df2o3

Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion df2o3 2𝑜=1𝑜

Proof

Step Hyp Ref Expression
1 df-2o 2𝑜=suc1𝑜
2 df-suc suc1𝑜=1𝑜1𝑜
3 df1o2 1𝑜=
4 3 uneq1i 1𝑜1𝑜=1𝑜
5 df-pr 1𝑜=1𝑜
6 4 5 eqtr4i 1𝑜1𝑜=1𝑜
7 1 2 6 3eqtri 2𝑜=1𝑜