Metamath Proof Explorer


Theorem dfif2

Description: An alternate definition of the conditional operator df-if with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006)

Ref Expression
Assertion dfif2 ifφAB=x|xBφxAφ

Proof

Step Hyp Ref Expression
1 df-if ifφAB=x|xAφxB¬φ
2 df-or xB¬φxAφ¬xB¬φxAφ
3 orcom xAφxB¬φxB¬φxAφ
4 iman xBφ¬xB¬φ
5 4 imbi1i xBφxAφ¬xB¬φxAφ
6 2 3 5 3bitr4i xAφxB¬φxBφxAφ
7 6 abbii x|xAφxB¬φ=x|xBφxAφ
8 1 7 eqtri ifφAB=x|xBφxAφ