Metamath Proof Explorer


Theorem dfpr2

Description: Alternate definition of a pair. Definition 5.1 of TakeutiZaring p. 15. (Contributed by NM, 24-Apr-1994)

Ref Expression
Assertion dfpr2 AB=x|x=Ax=B

Proof

Step Hyp Ref Expression
1 df-pr AB=AB
2 elun xABxAxB
3 velsn xAx=A
4 velsn xBx=B
5 3 4 orbi12i xAxBx=Ax=B
6 2 5 bitri xABx=Ax=B
7 6 eqabi AB=x|x=Ax=B
8 1 7 eqtri AB=x|x=Ax=B