Metamath Proof Explorer


Theorem dfsymdif4

Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004) (Revised by AV, 17-Aug-2022)

Ref Expression
Assertion dfsymdif4 AB=x|¬xAxB

Proof

Step Hyp Ref Expression
1 elsymdif xAB¬xAxB
2 1 eqabi AB=x|¬xAxB