Metamath Proof Explorer


Theorem elsymdifxor

Description: Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020) (Proof shortened by BJ, 13-Aug-2022)

Ref Expression
Assertion elsymdifxor ABCABAC

Proof

Step Hyp Ref Expression
1 elsymdif ABC¬ABAC
2 df-xor ABAC¬ABAC
3 1 2 bitr4i ABCABAC