Metamath Proof Explorer


Theorem dif1ennn

Description: If a set A is equinumerous to the successor of a natural number M , then A with an element removed is equinumerous to M . See also dif1ennnALT . (Contributed by BTernaryTau, 6-Jan-2025)

Ref Expression
Assertion dif1ennn MωAsucMXAAXM

Proof

Step Hyp Ref Expression
1 nnon MωMOn
2 dif1en MOnAsucMXAAXM
3 1 2 syl3an1 MωAsucMXAAXM