Metamath Proof Explorer


Theorem dihmeetlem5

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 6-Apr-2014)

Ref Expression
Hypotheses dihmeetlem5.b B=BaseK
dihmeetlem5.l ˙=K
dihmeetlem5.j ˙=joinK
dihmeetlem5.m ˙=meetK
dihmeetlem5.a A=AtomsK
Assertion dihmeetlem5 KHLXBYBQAQ˙XX˙Y˙Q=X˙Y˙Q

Proof

Step Hyp Ref Expression
1 dihmeetlem5.b B=BaseK
2 dihmeetlem5.l ˙=K
3 dihmeetlem5.j ˙=joinK
4 dihmeetlem5.m ˙=meetK
5 dihmeetlem5.a A=AtomsK
6 simpl1 KHLXBYBQAQ˙XKHL
7 simprl KHLXBYBQAQ˙XQA
8 simpl2 KHLXBYBQAQ˙XXB
9 simpl3 KHLXBYBQAQ˙XYB
10 simprr KHLXBYBQAQ˙XQ˙X
11 1 2 3 4 5 atmod2i1 KHLQAXBYBQ˙XX˙Y˙Q=X˙Y˙Q
12 6 7 8 9 10 11 syl131anc KHLXBYBQAQ˙XX˙Y˙Q=X˙Y˙Q
13 12 eqcomd KHLXBYBQAQ˙XX˙Y˙Q=X˙Y˙Q