Metamath Proof Explorer


Theorem disjeq1d

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjeq1d.1 φA=B
Assertion disjeq1d φDisjxACDisjxBC

Proof

Step Hyp Ref Expression
1 disjeq1d.1 φA=B
2 disjeq1 A=BDisjxACDisjxBC
3 1 2 syl φDisjxACDisjxBC