Metamath Proof Explorer


Theorem disjeq12d

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disjeq1d.1 φA=B
disjeq12d.1 φC=D
Assertion disjeq12d φDisjxACDisjxBD

Proof

Step Hyp Ref Expression
1 disjeq1d.1 φA=B
2 disjeq12d.1 φC=D
3 1 disjeq1d φDisjxACDisjxBC
4 2 adantr φxBC=D
5 4 disjeq2dv φDisjxBCDisjxBD
6 3 5 bitrd φDisjxACDisjxBD