Metamath Proof Explorer


Theorem disjresdisj

Description: The intersection of restrictions to disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion disjresdisj AB=RARB=

Proof

Step Hyp Ref Expression
1 resindi RAB=RARB
2 disjresin AB=RAB=
3 1 2 eqtr3id AB=RARB=