Metamath Proof Explorer


Theorem div11d

Description: One-to-one relationship for division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divmuld.3 φC
divassd.4 φC0
div11d.5 φAC=BC
Assertion div11d φA=B

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divmuld.3 φC
4 divassd.4 φC0
5 div11d.5 φAC=BC
6 div11 ABCC0AC=BCA=B
7 1 2 3 4 6 syl112anc φAC=BCA=B
8 5 7 mpbid φA=B