Metamath Proof Explorer


Theorem divcan2zi

Description: A cancellation law for division. (Contributed by NM, 10-Aug-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
Assertion divcan2zi B0BAB=A

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divcan2 ABB0BAB=A
4 1 2 3 mp3an12 B0BAB=A