Metamath Proof Explorer


Theorem divmul13i

Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divmuldiv.4 D
divmuldiv.5 B0
divmuldiv.6 D0
Assertion divmul13i ABCD=CBAD

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divmuldiv.4 D
5 divmuldiv.5 B0
6 divmuldiv.6 D0
7 3 1 mulcomi CA=AC
8 7 oveq1i CABD=ACBD
9 3 2 1 4 5 6 divmuldivi CBAD=CABD
10 1 2 3 4 5 6 divmuldivi ABCD=ACBD
11 8 9 10 3eqtr4ri ABCD=CBAD