Metamath Proof Explorer


Theorem divmul2d

Description: Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divmuld.3 φC
divassd.4 φC0
Assertion divmul2d φAC=BA=CB

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divmuld.3 φC
4 divassd.4 φC0
5 divmul2 ABCC0AC=BA=CB
6 1 2 3 4 5 syl112anc φAC=BA=CB