Metamath Proof Explorer


Theorem dmexd

Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis dmexd.1 φAV
Assertion dmexd φdomAV

Proof

Step Hyp Ref Expression
1 dmexd.1 φAV
2 dmexg AVdomAV
3 1 2 syl φdomAV