**Description:** Dominance is reflexive. (Contributed by NM, 18-Jun-1998)

Ref | Expression | ||
---|---|---|---|

Assertion | domrefg | $${\u22a2}{A}\in {V}\to {A}\preccurlyeq {A}$$ |

Step | Hyp | Ref | Expression |
---|---|---|---|

1 | enrefg | $${\u22a2}{A}\in {V}\to {A}\approx {A}$$ | |

2 | endom | $${\u22a2}{A}\approx {A}\to {A}\preccurlyeq {A}$$ | |

3 | 1 2 | syl | $${\u22a2}{A}\in {V}\to {A}\preccurlyeq {A}$$ |