Metamath Proof Explorer


Theorem en2d

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 12-May-2014) (Revised by AV, 4-Aug-2024)

Ref Expression
Hypotheses en2d.1 φAV
en2d.2 φBW
en2d.3 φxACX
en2d.4 φyBDY
en2d.5 φxAy=CyBx=D
Assertion en2d φAB

Proof

Step Hyp Ref Expression
1 en2d.1 φAV
2 en2d.2 φBW
3 en2d.3 φxACX
4 en2d.4 φyBDY
5 en2d.5 φxAy=CyBx=D
6 eqid xAC=xAC
7 3 imp φxACX
8 4 imp φyBDY
9 6 7 8 5 f1od φxAC:A1-1 ontoB
10 f1oen2g AVBWxAC:A1-1 ontoBAB
11 1 2 9 10 syl3anc φAB