Metamath Proof Explorer


Theorem en3d

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 12-May-2014) (Revised by AV, 4-Aug-2024)

Ref Expression
Hypotheses en3d.1 φAV
en3d.2 φBW
en3d.3 φxACB
en3d.4 φyBDA
en3d.5 φxAyBx=Dy=C
Assertion en3d φAB

Proof

Step Hyp Ref Expression
1 en3d.1 φAV
2 en3d.2 φBW
3 en3d.3 φxACB
4 en3d.4 φyBDA
5 en3d.5 φxAyBx=Dy=C
6 eqid xAC=xAC
7 3 imp φxACB
8 4 imp φyBDA
9 5 imp φxAyBx=Dy=C
10 6 7 8 9 f1o2d φxAC:A1-1 ontoB
11 f1oen2g AVBWxAC:A1-1 ontoBAB
12 1 2 10 11 syl3anc φAB