Metamath Proof Explorer


Theorem en2i

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004)

Ref Expression
Hypotheses en2i.1 AV
en2i.2 BV
en2i.3 xACV
en2i.4 yBDV
en2i.5 xAy=CyBx=D
Assertion en2i AB

Proof

Step Hyp Ref Expression
1 en2i.1 AV
2 en2i.2 BV
3 en2i.3 xACV
4 en2i.4 yBDV
5 en2i.5 xAy=CyBx=D
6 1 a1i AV
7 2 a1i BV
8 3 a1i xACV
9 4 a1i yBDV
10 5 a1i xAy=CyBx=D
11 6 7 8 9 10 en2d AB
12 11 mptru AB