Metamath Proof Explorer


Theorem en3i

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004)

Ref Expression
Hypotheses en3i.1 AV
en3i.2 BV
en3i.3 xACB
en3i.4 yBDA
en3i.5 xAyBx=Dy=C
Assertion en3i AB

Proof

Step Hyp Ref Expression
1 en3i.1 AV
2 en3i.2 BV
3 en3i.3 xACB
4 en3i.4 yBDA
5 en3i.5 xAyBx=Dy=C
6 1 a1i AV
7 2 a1i BV
8 3 a1i xACB
9 4 a1i yBDA
10 5 a1i xAyBx=Dy=C
11 6 7 8 9 10 en3d AB
12 11 mptru AB