Metamath Proof Explorer


Theorem en2i

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004)

Ref Expression
Hypotheses en2i.1 𝐴 ∈ V
en2i.2 𝐵 ∈ V
en2i.3 ( 𝑥𝐴𝐶 ∈ V )
en2i.4 ( 𝑦𝐵𝐷 ∈ V )
en2i.5 ( ( 𝑥𝐴𝑦 = 𝐶 ) ↔ ( 𝑦𝐵𝑥 = 𝐷 ) )
Assertion en2i 𝐴𝐵

Proof

Step Hyp Ref Expression
1 en2i.1 𝐴 ∈ V
2 en2i.2 𝐵 ∈ V
3 en2i.3 ( 𝑥𝐴𝐶 ∈ V )
4 en2i.4 ( 𝑦𝐵𝐷 ∈ V )
5 en2i.5 ( ( 𝑥𝐴𝑦 = 𝐶 ) ↔ ( 𝑦𝐵𝑥 = 𝐷 ) )
6 1 a1i ( ⊤ → 𝐴 ∈ V )
7 2 a1i ( ⊤ → 𝐵 ∈ V )
8 3 a1i ( ⊤ → ( 𝑥𝐴𝐶 ∈ V ) )
9 4 a1i ( ⊤ → ( 𝑦𝐵𝐷 ∈ V ) )
10 5 a1i ( ⊤ → ( ( 𝑥𝐴𝑦 = 𝐶 ) ↔ ( 𝑦𝐵𝑥 = 𝐷 ) ) )
11 6 7 8 9 10 en2d ( ⊤ → 𝐴𝐵 )
12 11 mptru 𝐴𝐵