Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | en2i.1 | ⊢ 𝐴 ∈ V | |
en2i.2 | ⊢ 𝐵 ∈ V | ||
en2i.3 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ∈ V ) | ||
en2i.4 | ⊢ ( 𝑦 ∈ 𝐵 → 𝐷 ∈ V ) | ||
en2i.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) | ||
Assertion | en2i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2i.1 | ⊢ 𝐴 ∈ V | |
2 | en2i.2 | ⊢ 𝐵 ∈ V | |
3 | en2i.3 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ∈ V ) | |
4 | en2i.4 | ⊢ ( 𝑦 ∈ 𝐵 → 𝐷 ∈ V ) | |
5 | en2i.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) | |
6 | 1 | a1i | ⊢ ( ⊤ → 𝐴 ∈ V ) |
7 | 2 | a1i | ⊢ ( ⊤ → 𝐵 ∈ V ) |
8 | 3 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ V ) ) |
9 | 4 | a1i | ⊢ ( ⊤ → ( 𝑦 ∈ 𝐵 → 𝐷 ∈ V ) ) |
10 | 5 | a1i | ⊢ ( ⊤ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) ) |
11 | 6 7 8 9 10 | en2d | ⊢ ( ⊤ → 𝐴 ≈ 𝐵 ) |
12 | 11 | mptru | ⊢ 𝐴 ≈ 𝐵 |