Metamath Proof Explorer


Theorem en2i

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004)

Ref Expression
Hypotheses en2i.1
|- A e. _V
en2i.2
|- B e. _V
en2i.3
|- ( x e. A -> C e. _V )
en2i.4
|- ( y e. B -> D e. _V )
en2i.5
|- ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) )
Assertion en2i
|- A ~~ B

Proof

Step Hyp Ref Expression
1 en2i.1
 |-  A e. _V
2 en2i.2
 |-  B e. _V
3 en2i.3
 |-  ( x e. A -> C e. _V )
4 en2i.4
 |-  ( y e. B -> D e. _V )
5 en2i.5
 |-  ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) )
6 1 a1i
 |-  ( T. -> A e. _V )
7 2 a1i
 |-  ( T. -> B e. _V )
8 3 a1i
 |-  ( T. -> ( x e. A -> C e. _V ) )
9 4 a1i
 |-  ( T. -> ( y e. B -> D e. _V ) )
10 5 a1i
 |-  ( T. -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) )
11 6 7 8 9 10 en2d
 |-  ( T. -> A ~~ B )
12 11 mptru
 |-  A ~~ B