Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | en2i.1 | |- A e. _V |
|
en2i.2 | |- B e. _V |
||
en2i.3 | |- ( x e. A -> C e. _V ) |
||
en2i.4 | |- ( y e. B -> D e. _V ) |
||
en2i.5 | |- ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) |
||
Assertion | en2i | |- A ~~ B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2i.1 | |- A e. _V |
|
2 | en2i.2 | |- B e. _V |
|
3 | en2i.3 | |- ( x e. A -> C e. _V ) |
|
4 | en2i.4 | |- ( y e. B -> D e. _V ) |
|
5 | en2i.5 | |- ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) |
|
6 | 1 | a1i | |- ( T. -> A e. _V ) |
7 | 2 | a1i | |- ( T. -> B e. _V ) |
8 | 3 | a1i | |- ( T. -> ( x e. A -> C e. _V ) ) |
9 | 4 | a1i | |- ( T. -> ( y e. B -> D e. _V ) ) |
10 | 5 | a1i | |- ( T. -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
11 | 6 7 8 9 10 | en2d | |- ( T. -> A ~~ B ) |
12 | 11 | mptru | |- A ~~ B |