| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							en3d.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							en3d.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							en3d.3 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  𝐶  ∈  𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							en3d.4 | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  𝐷  ∈  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							en3d.5 | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  =  𝐷  ↔  𝑦  =  𝐶 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 )  | 
						
						
							| 7 | 
							
								3
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								4
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝐷  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								5
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  =  𝐷  ↔  𝑦  =  𝐶 ) )  | 
						
						
							| 10 | 
							
								6 7 8 9
							 | 
							f1o2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 –1-1-onto→ 𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							f1oen2g | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 –1-1-onto→ 𝐵 )  →  𝐴  ≈  𝐵 )  | 
						
						
							| 12 | 
							
								1 2 10 11
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  𝐴  ≈  𝐵 )  |