Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Class form not-free predicate dvelimc  
				
		 
		
			
		 
		Description:   Version of dvelim  for classes.  Usage of this theorem is discouraged
       because it depends on ax-13  .  (Contributed by Mario Carneiro , 8-Oct-2016)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dvelimc.1   ⊢    Ⅎ   _  x  A       
					 
					
						dvelimc.2   ⊢    Ⅎ   _  z  B       
					 
					
						dvelimc.3    ⊢   z  =  y    →   A  =  B         
					 
				
					Assertion 
					dvelimc    ⊢   ¬   ∀  x   x  =  y        →    Ⅎ   _  x  B         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dvelimc.1  ⊢    Ⅎ   _  x  A       
						
							2 
								
							 
							dvelimc.2  ⊢    Ⅎ   _  z  B       
						
							3 
								
							 
							dvelimc.3   ⊢   z  =  y    →   A  =  B         
						
							4 
								
							 
							nftru  ⊢   Ⅎ  x  ⊤       
						
							5 
								
							 
							nftru  ⊢   Ⅎ  z  ⊤       
						
							6 
								1 
							 
							a1i   ⊢  ⊤  →    Ⅎ   _  x  A         
						
							7 
								2 
							 
							a1i   ⊢  ⊤  →    Ⅎ   _  z  B         
						
							8 
								3 
							 
							a1i   ⊢  ⊤  →    z  =  y    →   A  =  B          
						
							9 
								4  5  6  7  8 
							 
							dvelimdc   ⊢  ⊤  →    ¬   ∀  x   x  =  y        →    Ⅎ   _  x  B          
						
							10 
								9 
							 
							mptru   ⊢   ¬   ∀  x   x  =  y        →    Ⅎ   _  x  B