Metamath Proof Explorer


Theorem e03an

Description: Conjunction form of e03 . (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e03an.1 φ
e03an.2 ψ , χ , θ τ
e03an.3 φ τ η
Assertion e03an ψ , χ , θ η

Proof

Step Hyp Ref Expression
1 e03an.1 φ
2 e03an.2 ψ , χ , θ τ
3 e03an.3 φ τ η
4 3 ex φ τ η
5 1 2 4 e03 ψ , χ , θ η