Metamath Proof Explorer


Theorem e122

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e122.1 φψ
e122.2 φ,χθ
e122.3 φ,χτ
e122.4 ψθτη
Assertion e122 φ,χη

Proof

Step Hyp Ref Expression
1 e122.1 φψ
2 e122.2 φ,χθ
3 e122.3 φ,χτ
4 e122.4 ψθτη
5 1 vd12 φ,χψ
6 5 2 3 4 e222 φ,χη