Metamath Proof Explorer


Theorem e222

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e222.1 φ,ψχ
e222.2 φ,ψθ
e222.3 φ,ψτ
e222.4 χθτη
Assertion e222 φ,ψη

Proof

Step Hyp Ref Expression
1 e222.1 φ,ψχ
2 e222.2 φ,ψθ
3 e222.3 φ,ψτ
4 e222.4 χθτη
5 3 dfvd2i φψτ
6 5 imp φψτ
7 1 dfvd2i φψχ
8 7 imp φψχ
9 2 dfvd2i φψθ
10 9 imp φψθ
11 8 10 4 syl2im φψφψτη
12 11 pm2.43i φψτη
13 6 12 syl5com φψφψη
14 13 pm2.43i φψη
15 14 ex φψη
16 15 dfvd2ir φ,ψη