Metamath Proof Explorer


Theorem e13

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e13.1 φ ψ
e13.2 φ , χ , θ τ
e13.3 ψ τ η
Assertion e13 φ , χ , θ η

Proof

Step Hyp Ref Expression
1 e13.1 φ ψ
2 e13.2 φ , χ , θ τ
3 e13.3 ψ τ η
4 1 vd13 φ , χ , θ ψ
5 4 2 3 e33 φ , χ , θ η