Metamath Proof Explorer


Theorem e1a

Description: A Virtual deduction elimination rule. syl is e1a without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1a.1 φψ
e1a.2 ψχ
Assertion e1a φχ

Proof

Step Hyp Ref Expression
1 e1a.1 φψ
2 e1a.2 ψχ
3 1 in1 φψ
4 3 2 syl φχ
5 4 dfvd1ir φχ