Metamath Proof Explorer


Theorem e22an

Description: Conjunction form of e22 . (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e22an.1 φ,ψχ
e22an.2 φ,ψθ
e22an.3 χθτ
Assertion e22an φ,ψτ

Proof

Step Hyp Ref Expression
1 e22an.1 φ,ψχ
2 e22an.2 φ,ψθ
3 e22an.3 χθτ
4 3 ex χθτ
5 1 2 4 e22 φ,ψτ