Metamath Proof Explorer


Theorem ee22an

Description: e22an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee22an.1 φψχ
ee22an.2 φψθ
ee22an.3 χθτ
Assertion ee22an φψτ

Proof

Step Hyp Ref Expression
1 ee22an.1 φψχ
2 ee22an.2 φψθ
3 ee22an.3 χθτ
4 3 ex χθτ
5 1 2 4 syl6c φψτ