Metamath Proof Explorer


Theorem e233

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e233.1 φ,ψχ
e233.2 φ,ψ,θτ
e233.3 φ,ψ,θη
e233.4 χτηζ
Assertion e233 φ,ψ,θζ

Proof

Step Hyp Ref Expression
1 e233.1 φ,ψχ
2 e233.2 φ,ψ,θτ
3 e233.3 φ,ψ,θη
4 e233.4 χτηζ
5 1 dfvd2i φψχ
6 2 dfvd3i φψθτ
7 3 dfvd3i φψθη
8 5 6 7 4 ee233 φψθζ
9 8 dfvd3ir φ,ψ,θζ