Metamath Proof Explorer


Theorem e23an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e23an.1 φ,ψχ
e23an.2 φ,ψ,θτ
e23an.3 χτη
Assertion e23an φ,ψ,θη

Proof

Step Hyp Ref Expression
1 e23an.1 φ,ψχ
2 e23an.2 φ,ψ,θτ
3 e23an.3 χτη
4 3 ex χτη
5 1 2 4 e23 φ,ψ,θη